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DRIFT OF A RAREFIED GAS IN A PLANAR CHANNEL UNDER THE 

ACTION OF MONOCHROMATIC RADIATION 

I. V. Chermyaninov and V. G. Chernyak UDC 533.6.022.8:535.375.5 

A theoretical study is performed of light-induced drift of a rarefied gas in a 
planar channel. The problem is solved using linearized kinetic equations for 
a two-level particle model in the "weak field" approximation. Analytical ex- 
pressions are obtained for the drift, averaged over channel section in almost 
free-molecular (Kn >> I) and viscous with slippage (Kn << i) flow regimes. Var- 
ious mechanisms for this drift are analyzed. Numerical estimates of drift velo- 
city are presented. 

The phenomenon of light-induced drift involves [i] particles absorbing radiation in the 
form of a travelling wave while located in a mixture with a buffer gas, and taking on a di- 
rected motion (drift). The drift may occur in the direction of radiation propagation or 
opposite thereto. It has been established that this drift phenomenon is realized in cases 
typical of nonlinear optics and spectroscopy problems, and is inherent to several classes 
of particles: atoms, molecules, and ions. 

The great majority of studies of light-induced drift have investigated the phenomenon 
in an infinite gas. At the same time it is clear that light-induced drift is also possible 
in the case where the role of the buffer gas is played by an interphase surface, which re- 
flects excited and unexcited particles in different manners. The factor of gas--surface 
interaction becomes one of the dominant ones in drift motion in capillary-porous media. 

In [2] gas drift was studied in a vessel, the dimensions of which were large in com- 
parison to the atomic free path length. The model used in [2] of strong collisions with a 
single Maxwell collision frequency can be considered only as a first approximation for 
description of light-induced drift. In particular, it does not consider the collision 
mechanism of light-induced drift development related to difference in the frequency of 
collisions of excited and unexcited atoms among themselves [3, 4]. Moreover, to calculate 
the velocity of light-induced slippage, [2] considered the spatially homogeneous case, al- 
though it is precisely in the Knudsen layer that the macroparameters (and thus, the distri- 
bution function) experience their greatest changes. 

In [5] light-induced drift was studied in a planar channel on the basis of specific 
model equations [6], according to which each act of interatomic collision leads to extinc- 
tion of an excitation, and the saturation parameter is independent of particle velocity in 
the resonance region. The latter is possible only in the case of detuning of the radiation 
frequency from resonance ~ and a Doppler shift kv. In [6] the accommodation mechanism of 
light-induced drift was not considered. 

In the present study light-induced drift in a plannar channel will be described by 
second order model kinetic equations, which in contrast to the strong collision model 
include as macroparameters the gas velocity and the stress tensor, as well as considering 
three types of interparticle interactions. The problem is solved by the variation method, 
which permits achievement of sufficiently precise results over the entire Knudsen number 
(Kn) range, and in addition leads to simple analytical expressions for the light-induced 
drift in the two limiting cases Kn << 1 and Kn >> i. This permits a clear analysis of the 
contribution of both the collision and the accommodation mechanisms to gas drift at various 
Kn. 
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We will consider steady state motion of a monatomic gas between infinite parallel 
plates x = • caused by resonant interaction of the gas with light directed along the 
z-axis. Collisions of atoms with each other and with the boundary surface are assumed 
elastic. The absorbing particles have two energy levels (n, m are the ground and excited 
states), i.e., interaction of the radiation with the monatomic gas leads to formation of a 
binary mixture of atoms having identical masses, but differing collision cross sections. The 
state of such a gas mixture can be described by distribution functions fi, satisfying the 
kinetic equations [7]: 
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The absorption saturation parameter • characterizes the probability of individual 
transitions and is a function of particle velocity in the general case. The parameter < is 
proportional to radiation intensity and consequently depends on coordinate z due to absorp- 
tion of radiation by the gas. However in the case of an optically thin medium or at rela- 
tively small distances the drift velocity can be considered independent of z. Moreover, the 
radiation is assumed homogeneous over channel height. 

If the probability of of individual transitions is small (weak field, ~ << i), then the 
state of each gas component is only slightly disturbed and the distribution functions can be 
written in the form of slight deviations from the Maxwell distributions fi0: 

h=h0[l+h~(x, v)], i : n ,  m, 

oxp( (2) 

where ni0 is the equilibrium numerical density of component i, T is the equilibrium gas temper- 
ature. 

We will also assume the frequency of collisions between atoms is much greater than the 
radiation attenuation constant: 

r 2 -  r~ < 1. (3) 

This condition imposes certain limitations on the minimum possible gas pressure. 

The linearized kinetic equations (i) with second order collision integrals in MacCormack 
form [8] take on the following form: 
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8 i is the gas rarefaction parameter, inversely proportional to Knudsen number Kn, u i, ~ixz, 
Pi characterize the:macroscopic velocity, stress tensor, and pressure for mixture component 
i, the quantities ~}~), dependent on the concentration and Chapman--Cowling integrals, are 
defined in [8]. 

As boundary conditions we use the model of mirror-diffuse reflection, according to 
which the fraction (I--E i) of atoms of type i is reflected specularly, while the fraction 
e i is reflected diffusely with Maxwellian velocity distribution but a numerical density 
nit differing little from equilibrium: nit = ni0(l + 9jr ), The reflected molecules have 
the temperature of the wall. Then with consideration of linearization of Eq. (2) the 
boundary conditions for the perturbation functions take on the form 

1 ( l ) 1 , c ~ > O  e i v t ~ + ( 1  ei)hi x , c ~ < O  . ( 6 )  hi x =  2 . 2 " 

We then have the symmetry conditions 
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The coefficients e i characterizing the fraction of diffusely scattered excited and nonexcited 
atoms differ in the general case (e m ~ en)- 

Writing Eq. (4) in integral form with consideration of boundary conditions (6), (7) and 
substituting the expressions obtained for the perturbation functions in Eq. (5), we obtain 
a system of integral--moment equations for the macroscopic velocity and stress tensor for 
mixture component i: 
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In Eqs. (8), (9) the quantities Jn(x) are transcendental functions of the form [9]: 

b e 

To calculate the quantity <• it will be convenient to use the plasma function, numer- 
ical values of which are tabulated in [i0]. For the two limiting cases of homogeneous (F >> 
kg) and inhomogeneous (F << kv) broadening the expression for <• has the following form: 
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k = 2~/k is the wave number, and X is the wavelength. 

Equations (8), (9) define the local values of the macroscopic quantities. But the 
quantity of practical interest is the numerical flux I, averaged over the channel section 
and defining the number of atoms passing through the channel section per unit time: 
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To determine the numerical flux of Eq. (ii) it is necessary to solve the system of 
integral--moment equations (8), (9). These are Fredholm equations of the second sort. Con- 
sequently they can be solved by the Buvnov-Galerkin method [ii]. In this case the choice of 
test functions for the macroscopic quantities is important. It must be kept in mind that the 
macroscopic quantity profiles in the almost free-molecular regime are described precisely by 
the free terms of integral equations (8), (9). Therefore, in order that the solution contain 
the other limiting case (Kn << I), the test function form should be chosen on the basis of the 
behavior of the macroparameters in the regime with slippage. Considering the problem symmetry, 
the unknown functions ui, ~ixz can be approximated in the following manner: 

I . 2 u:=al iTai ,x ,  m~=aaix, i=n, m. (12) 

The t e s t  f u n c t i o n s  of  Eq. (12) co r r e spond  in  form to  s o l u t i o n s  of  t he  Nav ie r - -S tokes  e q u a t i o n s .  

To d e t e r m i n e  the  c o n s t a n t s  a l l ,  a 2 i ,  a a i  t h e  t e s t  f u n c t i o n s  of  Eq. (12) must  be s u b s t i -  
t u t e d  in  sys tem ( 8 ) - ( 9 ) ,  wh i l e  r e q u i r i n g  o r t h o g o n a l i t y  of  t he  e x p r e s s i o n s  o b t a i n e d  to  the  base 
f u n c t i o n s ,  w i t h  t h e  o r t h o g o n a l i t y  c o n d i t i o n  f o r  a r b i t r a r y  f u n c t i o n s  f and g hav ing  t he  form: 
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Thus, the quantities az i, a2 i, aa i are found by solution of a system of six linear algebraic 
equations. Having defined those values, we can obtain an expression for the numerical light- 
induced drift flux. The final expression is cumbersome in form, and so will not be presented. 
For simplification we can use the realistic approximation nm/n n << I, which is valid for weak 
radiation intensity. At intermediate Kundsen numbers a numerical calculation is necessary; 
analytical expressions for the numerical flux can be obtained for the two limiting cases: the 
almost free-molecular regime (6 n << i) 

I =  n,~ < U > - -  

and the regime with slippage (~n >> i) 
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Asymptotic analysis reveals that in the almost free-molecular flow regime as 8 n + 0 the 
absolute value of the light-induced drift increases logarithmically. This can be explained 
by the degeneration of the channel geometry (infinite plate dimensions). In the regime with 
slippage as 8n § ~ the light-induced drift vanishes as 6n -I 

The direction of atomic drift depends on the ratio of the particle dimensions in the 
excited and ground states, the character of the interaction with the boundary surface, and 
the sign of E, the detuning of the radiation frequency from the center of the absorption 
line. 

In the almost free-molecular regime (6n << i), Eq. (13), the drift is produced only by 
the accommodation mechanism, since collisions between atoms are insignificant in this regime. 
If A~ = ~n--~m > 0, then for ~ > 0 the gas drifts in the direction of the radiation, and for 

< 0, opposite the radiation. 

In the regime with slippage (6 n >> i) Eq. (14) includes a new mechanism producing gas 
drift, the collision mechanism. If the atoms interact with the interphase boundary iden- 
tically (gi = e), then for different collision frequencies of excited and nonexcited 
particles among themselves (0 ~ 1, Omn ~ Onn) light-induced drift develops. This mechanism 
appears only in a limited gas volume. In an infinite gas the difference in particle colli- 
sion frequencies does not lead to drift of the gas as a whole in view of the law of con- 
servation of momentum. In a finite volume oppositely directly fluxes of excited and non- 
excited particles correspond to different Knudsen numbers (since the collision sections are 
different), and thus, have different magnitudes. In this case, the light-induced drift is 
caused by the difference in fluxes, and its direction coincides with the direction of the 
nonexcited particle flux. The collision mechanism was first noted in [3, 4, 12] and con- 
firmed in [5]. 

If 8 = 1 (omn = ~ but As = en--g m ~ O, the accommodation mechanism enters into the 
drift, in a manner similar to the case with a buffer in an infinite gas. In this case the 
light-induced drift is caused by the different accommodation of the particles with the sur- 
face, which agrees qualitatively with [2]. The sign of the drift is determined by the 
ratio of the coefficients ~n, em and the sign of the detuning ~. If As = ~n--em > 0, then 
for ~ > 0 the drift is directed along the radiation; if Ag < 0, the direction and magnitude 
of the numerical flux are determined by the contribution of each of the mechanisms: accom- 
modation and collision. 

At exact resonance (~ = 0) gas drift is absent in any flow regime. In this case the 
spectral line of the set of particles will as before be a symmetrical contour with center on 
the quantum transition frequency u~n n. 

We will note that the expression fo r the numerical flux at 6 n >> I, Eq. (14), is uni- 
versal (it does not depend on the form of the interphase surface) and can serve as a slippage 
boundary condition for macroscopic laser gas dynamics equations. 
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We will now estimate the velocity of light-induced drift, averaged over the channel 
section for typical atomic characteristics. To do this we use the hard sphere molecule 
model. Then the expression for drift velocity in the regime with slippage (6 n >> I) for 
(Ag, Ao) << 1 for the case of inhomogeneous broadening (F << kg) has the following form: 
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then <U> ~ 0.5 m/sec. If Ag = O, then <U> ~ 0.13 m/sec, i.e., the collision mechanism produces 
a contribution of the order of 25% to the light-induced drift. 

In conclusion we will note that expression for drift velocity at (6 n >> i) can be used to 
determine gas--surface interaction parameters and transport sections for excited and nonexcited 
atoms. 

NOTATION 

F m, radiation decay constant for level m; r, homogeneous absorption line width; E, radia- 
tion electric field amplitude; dmn , dipole moment matrix element; fi , Planck's constant; Si, 
collision integral; k, incident wave vector; m, monochromatic radiation frequency; m, particle 
mass; kB, Boltzmann's constant; u frequency of collisions between type i and j atoms; v, 
most probable particle velocity; I, radiation intensity; aij , collision cross sections of 
type i and j particles. 
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